MTH 213 Discrete Mathematics Fall 2017, 1–2

Assignment IV: MTH 213, Fall 2017

Ayman Badawi

QUESTION 1. (i) Prove that $\sqrt{5}$ is irrational

Solution: Deny. Then $\sqrt{5} = \frac{a}{b}$ (note a, b must be odd (see class notes) and gcd(a, b) = 1). Hence as in class we have

 $5 = \frac{(2k+1)^2}{(2m+1)^2}$ (note that $k, m \in Z$).

so we have $20m^2 + 20m + 5 = 4k^2 + 4k + 1$

Hence $20m^2 + 20m + 4 = 4k^2 + 4k$. Divide by 5 we have

 $5m^2 + 5m + 1 = k^2 + k$, impossible since for any m we have $5m^2 + 5m + 1$ is an odd integer and for any k we have $k^2 + k$ is even.

Thus $\sqrt{5}$ is irrational.

(ii) Prove $\sqrt{21}$ is irrational [hint: same argument as in (i), we conclude $2m^2 + 2m + 5$ is odd where $k^2 + k$ is even]

(iii) Prove $\sqrt{45}$ is irrational [Trivial $\sqrt{45} = 3\sqrt{5}$ done by (i)]

- (iv) Prove $\sqrt{48}$ is irrational. [Trivial $\sqrt{48} = 4\sqrt{3}$ and we proved $\sqrt{3}$ is irrational]
- (v) let n be an even number of the form 2m for some odd number m. Prove that \sqrt{n} is irrational [hint: Deny. Then observe that n = a/b where a must be even, b must be odd and of course gcd(a, b) = 1.]

Solution: Deny. Then $\sqrt{n} = \frac{a}{b}$ (note that a must be even and b must be odd (see class notes) and gcd(a,b) = 1). Hence as in class we have

 $n=2m=rac{(4k^2)}{(2w+1)^2}$ (note that $k,w\in Z$).

so we have $8mw^2 + 8mw + 2m = 4k^2$ (note m is odd)

divide by 4 we get $2mw^2 + 2mw + \frac{2m}{4} = k^2 \in \mathbb{Z}$, a contradiction since $\frac{2m}{4}$ is not an integer (because m is odd). Thus \sqrt{n} is irrational.

(vi) Enough training. So in general let $n = p_1 p_2 \cdots p_k$ where the $p'_i s$ are distinct odd prime numbers $(k \ge 1)$ and assume that 4 is not a factor of n - 1. Prove that \sqrt{n} is irrational (i.e., if n is a product of k distinct odd prime numbers and 4 is not a factor of n - 1, then \sqrt{n} is irrational.)Note that as a special case, assume k = 1, then n is prime and hence it follows that if n is a prime number and 4 is not a factor of n - 1, then \sqrt{n} is not a factor of n - 1, then \sqrt{n} is prime and hence it follows that if n is a prime number and 4 is not a factor of n - 1, then \sqrt{n} is irrational.

Solution: Deny. Then $\sqrt{n} = \frac{a}{b}$ (note that a, b are odd integers and gcd(a, b) = 1). Hence as in class we have

 $n = \frac{(2k+1)^2}{(2m+1)^2} \text{ (note that } k, m \in Z\text{).}$ so we have $4nm^2 + 4nm + n = 4k^2 + 4k + 1$ Hence $4nm^2 + 4nm + n - 1 = 4k^2 + 4k$. divide by 4 we get $nm^2 + m + \frac{n-1}{4} = k^2 + k \in Z$, a contradiction since $\frac{n-1}{4}$ is not an integer. Thus \sqrt{n} is irrational.

- (vii) Prove that $\sqrt{19}$ is irrational [see (vI)]
- (viii) Prove that $\sqrt{87}$ is irrational[see (VI)]
- (ix) Let p_1, p_2 be distinct prime numbers such that 4 is not a factor of $(p_1p_2 1)$. Prove that $\sqrt{p_1} + \sqrt{p_2}$ is irrational. Solution: Deny. Then $\sqrt{p_1} + \sqrt{p_2} = \frac{a}{b}$, where gcd(a, b) = 1.

Hence
$$(\sqrt{p_1} + \sqrt{p_2})^2 = \frac{a^2}{b^2}$$

Thus $p_1 + 2\sqrt{p_1p_2} + p_2 = \frac{a^2}{b^2}$. Solve for $\sqrt{p_1p_2}$

We have $\sqrt{p_1p_2} = \frac{a^2}{2b^2} - \frac{p_1}{2} - \frac{p_2}{2}$ is a rational number, a contradiction, because 4 is not a factor of $p_1p_2 - 1$, and thus $\sqrt{p_1p_2}$ is irrational by (vi). Hence $\sqrt{p_1} + \sqrt{p_2}$ is irrational

(x) Prove that $\sqrt{27} + \sqrt{13}$ is irrational. Solution: Deny. Note $\sqrt{27} + \sqrt{13} = 3\sqrt{3} + \sqrt{13}$, $p_1 = 3$ and $p_2 = 13$ are prime numbers and 4 is not a factor of $p_1p_2 - 1 = 38$. So use similar argument as in(vi). Deny

 $3\sqrt{3} + \sqrt{13} = \frac{a}{b}$, where gcd(a, b) = 1. Hence $(3\sqrt{3} + \sqrt{13})^2 = \frac{a^2}{b^2}$

Thus $27 + 6\sqrt{39} + 13 = \frac{a^2}{b^2}$. Solve for $\sqrt{39}$

-, ID _____

We have $\sqrt{39} = \frac{a^2}{2b^2} - \frac{27}{6} - \frac{13}{6}$ is a rational number, a contradiction, because 4 is not a factor of $p_1p_2 - 1 = 38$, and thus $\sqrt{39}$ is irrational by (vi). Hence $\sqrt{27} + \sqrt{13} = 3\sqrt{3} + \sqrt{13}$ is irrational

Remark: The method I presented here does not exist in the book or over the net, but this method does not work perfectly if 4 is a factor of n - 1. I can use a different method to show that the above are still true when 4 is a factor of (n - 1). The method involves a fact from number theory that says: If $p_1p_2 \cdots p_k$ are DISTINCT PRIME numbers and $p_1p_2 \cdots p_k | n^2$, then $p_1p_2 \cdots p_k | n$. In particular if k = 1, then if $p_1 | n^2$, then $p_1 | n (p_1 \text{ is prime})$. Note that in general if m, n are integers and $m | n^2$, then m need not be a factor of n. For example: let m = 8, n = 4. Then m is a factor of n^2 , but m is not a factor of n. However, I do not want to use this method and I will try to develop the method I used here for the case 4 | (n - 1). If no success, then I will use this method later on

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com