Assignment IV: MTH 213, Fall 2017

Ayman Badawi

QUESTION 1. (i) Prove that $\sqrt{5}$ is irrational
Solution: Deny. Then $\sqrt{5}=\frac{a}{b}$ (note a, b must be odd (see class notes) and $\operatorname{gcd}(a, b)=1$). Hence as in class we have
$5=\frac{(2 k+1)^{2}}{(2 m+1)^{2}}$ (note that $k, m \in Z$).
so we have $20 m^{2}+20 m+5=4 k^{2}+4 k+1$
Hence $20 m^{2}+20 m+4=4 k^{2}+4 k$. Divide by 5 we have
$5 m^{2}+5 m+1=k^{2}+k$, impossible since for any \mathbf{m} we have $5 m^{2}+5 m+1$ is an odd integer and for any k we have $k^{2}+k$ is even.
Thus $\sqrt{5}$ is irrational.
(ii) Prove $\sqrt{21}$ is irrational [hint: same argument as in (i), we conclude $? m^{2}+? m+5$ is odd where $k^{2}+k$ is even]
(iii) Prove $\sqrt{45}$ is irrational [Trivial $\sqrt{45}=3 \sqrt{5}$ done by (i)]
(iv) Prove $\sqrt{48}$ is irrational. [Trivial $\sqrt{48}=4 \sqrt{3}$ and we proved $\sqrt{3}$ is irrational]
(v) let n be an even number of the form $2 m$ for some odd number m. Prove that \sqrt{n} is irrational [hint: Deny. Then observe that $n=a / b$ where a must be even, b must be odd and of course $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$.]
Solution: Deny. Then $\sqrt{n}=\frac{a}{b}$ (note that a must be even and b must be odd (see class notes) and $\operatorname{gcd}(a, b)=1$). Hence as in class we have
$n=2 m=\frac{\left(4 k^{2}\right.}{(2 w+1)^{2}}$ (note that $k, w \in Z$).
so we have $8 m w^{2}+8 m w+2 m=4 k^{2}$ (note \mathbf{m} is odd)
divide by 4 we get $2 m w^{2}+2 m w+\frac{2 m}{4}=k^{2} \in Z$, a contradiction since $\frac{2 m}{4}$ is not an integer (because \mathbf{m} is odd). Thus \sqrt{n} is irrational.
(vi) Enough training. So in general let $n=p_{1} p_{2} \cdots p_{k}$ where the $p_{i}^{\prime} s$ are distinct odd prime numbers $(k \geq 1)$ and assume that 4 is not a factor of $n-1$. Prove that \sqrt{n} is irrational (i.e., if n is a product of k distinct odd prime numbers and 4 is not a factor of $n-1$, then \sqrt{n} is irrational.)Note that as a special case, assume $k=1$, then n is prime and hence it follows that if n is a prime number and 4 is not a factor of $n-1$, then \sqrt{n} is irrational.
Solution: Deny. Then $\sqrt{n}=\frac{a}{b}$ (note that a, b are odd integers and $\operatorname{gcd}(a, b)=1$). Hence as in class we have $n=\frac{(2 k+1)^{2}}{(2 m+1)^{2}}$ (note that $k, m \in Z$).
so we have $4 n m^{2}+4 n m+n=4 k^{2}+4 k+1$
Hence $4 \mathrm{~nm}^{2}+4 \mathrm{~nm}+n-1=4 k^{2}+4 k$.
divide by 4 we get $n m^{2}+m+\frac{n-1}{4}=k^{2}+k \in Z$, a contradiction since $\frac{n-1}{4}$ is not an integer.
Thus \sqrt{n} is irrational.
(vii) Prove that $\sqrt{19}$ is irrational [see (vI)]
(viii) Prove that $\sqrt{87}$ is irrational[see (VI)]
(ix) Let p_{1}, p_{2} be distinct prime numbers such that 4 is not a factor of $\left(p_{1} p_{2}-1\right)$. Prove that $\sqrt{p_{1}}+\sqrt{p_{2}}$ is irrational.

Solution: Deny. Then $\sqrt{p_{1}}+\sqrt{p_{2}}=\frac{a}{b}$, where $\operatorname{gcd}(a, b)=1$.
Hence $\left(\sqrt{p_{1}}+\sqrt{p_{2}}\right)^{2}=\frac{a^{2}}{b^{2}}$
Thus $p_{1}+2 \sqrt{p_{1} p_{2}}+p_{2}=\frac{a^{2}}{b^{2}}$. Solve for $\sqrt{p_{1} p_{2}}$
We have $\sqrt{p_{1} p_{2}}=\frac{a^{2}}{2 b^{2}}-\frac{p_{1}}{2}-\frac{p_{2}}{2}$ is a rational number, a contradiction, because 4 is not a factor of $p_{1} p_{2}-1$, and thus $\sqrt{p_{1} p_{2}}$ is irrational by (vi). Hence $\sqrt{p_{1}}+\sqrt{p_{2}}$ is irrational
(x) Prove that $\sqrt{27}+\sqrt{13}$ is irrational. Solution: Deny. Note $\sqrt{27}+\sqrt{13}=3 \sqrt{3}+\sqrt{13}, p_{1}=3$ and $p_{2}=13$ are prime numbers and 4 is not a factor of $p_{1} p_{2}-1=38$. So use similar argument as in(vi). Deny
$3 \sqrt{3}+\sqrt{13}=\frac{a}{b}$, where $\operatorname{gcd}(a, b)=1$.
Hence $(3 \sqrt{3}+\sqrt{13})^{2}=\frac{a^{2}}{b^{2}}$
Thus $27+6 \sqrt{39}+13=\frac{a^{2}}{b^{2}}$. Solve for $\sqrt{39}$

We have $\sqrt{39}=\frac{a^{2}}{2 b^{2}}-\frac{27}{6}-\frac{13}{6}$ is a rational number, a contradiction, because 4 is not a factor of $p_{1} p_{2}-1=38$, and thus $\sqrt{39}$ is irrational by (vi). Hence $\sqrt{27}+\sqrt{13}=3 \sqrt{3}+\sqrt{13}$ is irrational

Remark: The method I presented here does not exist in the book or over the net, but this method does not work perfectly if 4 is a factor of $n-1$. I can use a different method to show that the above are still true when 4 is a factor of $(n-1)$. The method involves a fact from number theory that says: If $p_{1} p_{2} \cdots p_{k}$ are DISTINCT PRIME numbers and $p_{1} p_{2} \cdots p_{k} \mid n^{2}$, then $p_{1} p_{2} \cdots p_{k} \mid n$. In particular if $k=1$, then if $p_{1} \mid n^{2}$, then $p_{1} \mid n$ (p_{1} is prime). Note that in general if m, n are integers and $m \mid n^{2}$, then m need not be a factor of n. For example: let $m=8, n=4$. Then m is a factor of n^{2}, but m is not a factor of n. However, \boldsymbol{I} do not want to use this method and I will try to develop the method I used here for the case $4 \mid(n-1)$. If no success, then I will use this method later on

Faculty information

